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Relativistic nonlinear dynamics of a driven constant-period oscillator

Seung-Woo Lee, Jung-Hoon Kim, and Hai-Woong Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 4 April 1997!

The nonlinear dynamics of the constant-period oscillator~relativistic oscillator whose period is independent
of energy! driven by a time-periodic external force is studied. It is shown that the oscillator displays nonlinear
resonances and chaos when the driving force is sufficiently strong. Such nonlinear behavior arises from the fact
that the frequency of the oscillator is shifted from its natural value and becomes energy dependent in the
presence of an external force. Theoretical analysis of the resonances is given using the second-order canonical
perturbation theory.@S1063-651X~97!10210-0#

PACS number~s!: 05.45.1b, 03.30.1p
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I. INTRODUCTION

Recently, we reported on fundamental mathematical
physical properties of a relativistic oscillator whose period
independent of energy, which we refer to as the const
period oscillator~CPO! @1#. In this work we study classica
dynamics of the CPO driven by a time-periodic force.

The CPO is a relativistic counterpart of the simple h
monic oscillator~SHO! in the sense that both SHO and CP
are characterized by an energy-independent period of
tion. The period of the SHO is constant as long as one
mains in the nonrelativistic regime, and this is essentia
why the SHO, even when driven by a time-varying exter
force, is entirely free of chaos. As one enters the relativi
regime, however, the period of the SHO is no longer in
pendent of energy, which gives rise to the generation of n
linear resonances and eventually to chaos when a sufficie
strong external force is present@2#. It can then be immedi-
ately suggested that, when relativistic effects are taken
account, the system that is most resistant to the generatio
nonlinear resonances and to chaotic behavior would be
CPO, a direct motivation for this study.

As reported in this paper, however, the driven CPO is
entirely free of chaos. Our numerical calculations show t
nonlinear resonances are generated and, when these
nances overlap, chaotic behavior occurs. The origin for s
chaotic behavior of the driven CPO lies in the fact that
period of the CPO is no longer constant in the presence o
external force. This is what differentiates the CPO from
SHO. The period of the nonrelativistic SHO is still given b
its natural period even when an external force is pres
while the period of the CPO is shifted from its natural val
and becomes energy dependent upon application of an e
nal force. The shift in the period can be properly dealt w
only when one goes beyond the lowest order in the canon
perturbation theory. The dynamics of the driven CPO
unique in the sense that the lowest-order perturbation the
fails completely and challenges one to go to higher order
use a more elaborate theory. Here, results of our study b
on the second-order perturbation theory are reported.

II. CONSTANT-PERIOD OSCILLATOR

We first present a brief review of the CPO@1#. The CPO
is characterized by the unique property that its period
561063-651X/97/56~4!/4090~7!/$10.00
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motion is independent of energy in the entire energy ran
both nonrelativistic and relativistic. The CPO can thus
considered as a generalized version of the SHO whose pe
of motion is independent of energy only in the nonrelativis
region.

Mathematically, a constant period means that the ac
variableI varies linearly with energy, i.e.,

I 5
1

2p R pdq5
2

pcE0

b
A@E1mc22V~q!#22m2c4dq

5
T

2p
E, ~1!

where V(q), assumed to be symmetric aboutq50, repre-
sents the potential that yields the energy-independent pe
b is the amplitude of oscillation at given energyE, andT is
the constant period of motion. From Eq.~1!, one can obtain,
using the technique of Laplace transform,

E
0

`

e2lEV21~E!dE5
cT

4mc2

1

l2elmc2
K1~lmc2!

, ~2!

whereK1 denotes the modified Bessel function of order
Equation~2!, in principle, allows one to determineV21, the
inverse function ofV, and thusV(q). No analytic expression
in terms of known functions, however, has been found
the potentialV(q).

The behavior ofV(q) in the vicinity of q50 is deter-
mined by the motion of the CPO in the nonrelativistic lim
By utilizing the asymptotic expansion ofK1 for largelmc2,
one obtains from Eq.~2!

V~q!>
1

2
mS 2pq

T D , ~3!

which indicates thatV(q) approaches the harmonic potenti
as q→0. The potentialV(q) diverges asq approaches
6cT/4. The behavior ofV(q) nearq>6cT/4 can be deter-
mined by utilizing the power series expansion ofK1 for
small lmc2, and is given by
4090 © 1997 The American Physical Society
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FIG. 1. Poincare´ phase-space
maps for the driven CPO at~a!
F052, ~b! F055, ~c! F059, and
~d! F0513 ~in arbitrary units!.
The parameters are m51,
c51, w51 andw052p ~in arbi-
trary units!.
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V~q!>mc21
mc2

A2

1

A124uqu/cT
. ~4!

In the immediate vicinity ofq56cT/4, V(q) is almost a
vertical line. This can be understood because, in the
trarelativistic limit, the velocity of the oscillator isv>c and
changes little with respect to energy. If the period of osc
lation is still to remain independent of energy, the amplitu
of oscillation should remain constant regardless of ene
which reguiresV(q) to be a vertical line.

Although no exact analytic formula exists for the potent
V(q), some approximate formulas were found that clos
reproduce the exact potential for the entire range ofq,
2cT/4,q,cT/4. Two examples are given below:

V1~q!5
mc2p2

2 H F12S 4q

cTD 2G21/4

21J , ~5!

V2~q!5
mc2

0.3
H coshF 1

20
~2pq/cT!2G

cos0.3~2pq/cT!
21J . ~6!
l-

-
e
y,

l
y

Both Eqs.~5! and ~6! satisfy Eq.~3! in the limit q→0, but
neither is consistent with Eq.~4! in the limit q→6cT/4.
Nevertheless, the two approximate formulas have been fo
to yield a constant period to within 0.2% of fractional err
in both the nonrelativistic and relativistic energy region
When high accuracy is required, the exactV(q) can be ob-
tained numerically, as described in Ref.@1#. The potential
V(q) generally has a bell-shaped curve; it behaves like
harmonic potential in the vicinity ofq50, but the slope of
the potential curve increases asq moves from zero toward
6cT/4, until it becomes virtually a vertical line a
q56cT/4.

III. POINCARE´ MAPS

We now consider the CPO driven by a time-periodic for
and present in this section results of our numerical comp
tion of Poincare´ phase-space maps. The Hamiltonian for t
driven CPO is

H5Ap2c21m2c41V~q!1qF0coswt, ~7!
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whereV(q) is the constant period potential described in t
previous section. In our numerical computation, both the
tential numerically obtained and the approximate analytic
pressions of Eqs.~5! and ~6! were used and found to giv
virtually identical maps.V(q) was chosen such that the nat
ral period of the CPO isT51, i.e., the frequency of oscilla
tion in the absence of an external force isw052p, andm, c,
andw were taken to bem51, c51, w51. With w0 andw
as chosen above, the resonance condition

w

V
5

m

n
~m,n integers! ~8!

cannot be satisfied, ifV, the frequency of oscillation in the
presence of an external force, is taken to beV5w0, as is
usually done in the lowest-order canonical perturbat
theory. The phase-space maps shown below, however,
cate clearly the existence of resonances and thus the nee
higher-order perturbation theory.

Figure 1 shows Poincare´ phase-space maps for our drive
CPO obtained through numerical computation. AtF052, the
trajectories are seen to revolve around the central fixed po
a normal behavior one would expect also from, for examp
a driven SHO in the nonrelativistic regime. AtF055, how-
ever, a nonlinear resonance appears with the elliptic
hyperbolic fixed points located respectively
(q520.1874,p50) and (q50.0307,p50). We see that, a

FIG. 2. Frequency of oscillationV vs the action variableJ
obtained theoretically using Eq.~22! ~solid curves! and numerically
from the Poincare´ maps~circles! at ~a! F052, ~b! F055, and~c!
F059 ~in arbitrary units!. The parameters arem51, c51, w51,
andw052p ~in arbitrary units!.
-
-

n
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for

t,
,

d

F059, these fixed points are located further away from
central fixed point and a second resonance with the elli
and hyperbolic fixed points at (q520.0870,p50) and
(q520.1772,p50) is generated. Finally, atF0513, a con-
siderable portion of the phase space is occupied by a cha
sea.

IV. RESONANCE ANALYSIS

In this section we analyze the motion of the driven CP
using the second-order perturbation theory. In order to ap
the canonical perturbtion theory, it is convenient first to go
the action-angle space. The Hamiltonian is written in ter
of the action-angle variablesI ,u as

H5w0I 1eF0(
n

An~ I !cosnu coswt, ~9!

where the parametere is introduced to identify the driving
force term as the perturbation and will be sete51 at the end
of the calculation, andAn(I )’s are defined as

q5(
n

An~ I !cosnu. ~10!

An(I )’s vanish for evenn if the potential is symmetric, and
approach the SHO limit

An~ I !5A 2I

mw0
dn1 ~11!

TABLE I. The location (q value! of the fixed points of the
resonances obtained theoretically from the second-order pertu
tion theory and numerically from the Poincare´ maps. For all fixed
points listed, p50. The parameters arem51, c51, w51, and
w052p ~in arbitrary units!.

Theoretical Numerical
F0 V:w Elliptic Hyperbolic Elliptic Hyperbolic

4 7:1 20.16 20.01 20.14 20.02
5 7:1 20.19 0.02 20.19 0.03
6 7:1 20.21 0.03 20.21 0.06
9 7:1 20.23 0.02 20.23 0.09
9 9:1 20.07 20.22 20.09 20.18

FIG. 3. Trajectory (q vs time! initiated at the elliptic fixed point
of the 7:1 resonance. The parameters arem51, c51, w51, and
w052p ~in arbitrary units!.
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FIG. 4. Poincare´ phase-space
maps for the driven CPO at~a!
F052, ~b! F055, ~c! F059, and
~d! F0513 ~in arbitrary units!.
The parameters arem51, c51,
w52, and w051 ~in arbitrary
units!.
a

i

rs

-

th
when the oscillator energy is sufficiently nonrelativistic th
w0I !mc2. In general for the CPO,An(I )’s cannot be ex-
pressed in an analytic form but were obtained numerically
Ref. @1# for n51 –11.An(I )’s usually decrease fast asn is
increased, and it is often sufficient to consider only the fi
few.

In the canonical perturbation theory@3#, one seeks a ca
nonical transformation from the action-angle variables (I ,u)
to a new set of action-angle variables (J,f), which allows an
identification of the action variableJ as an invariant to a
desired order of perturbation. The generating function for
desired transformation is written as

S~J,u,t !5Ju1eS~J,u,t !1e2S2~J,u,t !1•••. ~12!

The relation betweenI ,u andJ,f is given by

I 5
]S

]u
5J1e

]S1~J,u,t !

]u
1e2

]S2~J,u,t !

]u
1•••, ~13!

f5
]S

]J
5u1e

]S1~J,u,t !

]J
1e2

]S2~J,u,t !

]J
1•••, ~14!
t

n

t

e

and the new Hamiltonian by

K~J,f,t !5H~ I ,u,t !1
]S

]t
. ~15!

Substituting Eqs.~9! and~12! into Eq.~15! and utilizing Eqs.
~13! and ~14! to collect terms of the same order ine, we
obtain

K~J,f,t !5w0J1eFw0

]S1

]u
1

]S1

]t

1F0(
n

An~J!cosnu coswtG1e2Fw0

]S2

]u
1

]S2

]t

1F0(
n

dAn~J!

dJ

]S1

]u
cosnu coswtG1•••. ~16!

Now, S1 and S2 are to be chosen so as to eliminate theu-
and t-dependent parts in the brackets of Eq.~16!. Straight-
forward algebraic manipulation yields
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FIG. 5. Poincare´ phase-space
maps for the driven SHO at~a!
F052, ~b! F055, ~c! F059, and
~d! F0513 ~in arbitrary units!.
The parameters arem51, c51,
w52, andw0 ~natural frequency
in the nonrelativistic limit! 51 ~in
arbitrary units!.
nal

O
sent.

o

.
ri-
er
S1~J,u,t !52
F0

2 (
n

An~J!Fsin~nu1wt!

nw01w
1

sin~nu2wt!

nw02w G ,
~17!

and a somewhat more complex expression forS2. Equation
~16! then becomes

K~J,f,t !5w0J1eK1~J!1e2K2~J!1e3K3~J,f,t !1•••,
~18!

where

K1~J!5K F0(
n

An~J!cosnucoswtL 50, ~19!

K2~J!5K F0(
n

dAn~J!

dJ

]S1

]u
cosn ucoswtL

52
F0

2

8 (
n

d@An~J!#2

dJ

n2w0

~nw01w!~nw02w!
.

~20!
Here, the bracket̂ & denotes a quantity averaged overu and
t; i.e.,

^ f ~J,u,t !&5
1

TE0

T

dt
1

2pE0

2p

du f ~J,u,t !. ~21!

The frequency of oscillation in the presence of the exter
force is given, to second order of perturbation, by

V~J!5
]K

]J
5w02

F0
2

8 (
n

d2@An~J!#2

dJ2

n2w0

~nw01w!~nw02w!
,

~22!

where we sete51.
Equation ~22! indicates that the frequency of the CP

becomes energy dependent when an external force is pre
Substituting Eq.~22! into Eq. ~8!, one can now determine
whether and where then:m resonance corresponding t
V:w5n:m exists. In Fig. 2 we showV(J) as a function of
J at different values ofF0 obtained theoretically using Eq
~22! with An(J) determined numerically as well as nume
cally from the Poincare´ maps. It is seen that the second-ord
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FIG. 6. Poincare´ phase-space
maps for the driven square-we
oscillator at~a! F052, ~b! F055,
~c! F059, and~d! F0513 ~in ar-
bitrary units!. The parameters are
m51, c51, w52, andw0 ~natural
frequency in the ultrarelativistic
limit ! 51 ~in arbitrary units!.
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perturbation theory on which Eq.~22! is based yields value
of V in good agreement with the exact numerical values.
note, in particular, that the maximum value ofV is greater
than 7 atF055 but less than 7 atF052. The resonance
condition, Eq.~8!, can thus be satisfied withm51 andn57
at F055, but not atF052. This suggests that the resonan
that appears atF055 but is missing atF052, as observed
from Fig. 1, is the 7:1 resonance. That this is indeed the c
is confirmed by our numerical calculation of the trajecto
initiated at the elliptic fixed point (q520.1874,p50) of the
resonance shown in Fig. 3. We observe also from Fig. 2
the maximum value ofV is greater than 9 atF059, indicat-
ing that the second resonance seen in Fig. 1~c! is the 9:1
resonance.

The location of each fixed point of the resonances can
approximately determined by straightforward algebra. Fo
given value ofF0, we first solve Eq.~22! to obtain the value
of J that yieldsV corresponding to the resonance being co
sidered, sayV57 if a fixed point of the 7:1 resonance is
be determined. We then use the relation of Eq.~13! to deter-
mine I corresponding to the fixed point from this value ofJ,
taking t52pn/w and assigning an appropriate value ofu.
e

se

at

e
a

-

For the elliptic or hyperbolic fixed point of the 7:1 or 9:
resonance of Fig. 1~c!, the appropriate value ofu is 0 or p,
which corresponds top50. With I and u determined as
above,q can be obtained from Eq.~10!. The locations of the
fixed points evaluated as above are shown in Table I al
with those determined numerically from the phase-sp
plots. The agreement between the two sets is seen to
reasonably good, which gives an added confirmation that
second-order perturbation theory provides a reasonably a
rate description of the dynamics of the CPO being cons
ered.

V. COMPARISON WITH SIMPLE HARMONIC
OSCILLATOR AND SQUARE-WELL OSCILLATOR

Further physical insights into the dynamics of the driv
CPO can be gained by comparing the behavior of the dri
CPO with that of the driven SHO and the driven square-w
oscillator. For that purpose we present in Figs. 4–6 Poinc´
phase-space maps for relativistic oscillators in the cons
period potential, harmonic potential, and square-well pot
tial, respectively. For convenience of comparison, we ha
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chosen the driving frequencyw52 and the natural frequenc
of each oscillatorw051 while m51 and c51 as before.
Here the natural frequency of the SHO is defined as tha
the nonrelativistic limit (v!c), while the natural frequency
of the oscillator in the square-well potential is defined as t
in the ultrarelativistic limit (v>c). Thus, w051 for the
square well means that the half width of the well isa5p/2.
Comparing Figs. 4–6, we first note that the square-well m
tion is most easily chaotic. This is because the low-ene
region of the square-well potential is occupied densely w
high-period resonances that overlap easily upon applica
of even a weak external force. At relatively high values
F0, the phase-space maps of the square well and CPO
semble each other, which reflects the fact that the CPO in
ultrarelativistic limit behaves like a particle in a square we
The SHO’s phase-space map compared with that of the C
is characterized by many primary resonances that show
clearly in the map. We should note, however, that the size
the chaotic sea is smaller for the CPO than for the SHO.
example, atF0513, the chaotic sea spreads over the reg
betweenp>220 andp>20 for the CPO, while for the SHO
the range ofp spanned by the chaotic sea is three times
large. This results from the fact that the CPO with its ener
independent period in the absence of an external forc
more strongly resistant to generation of nonlinear resonan
than the SHO when an external force is applied.

VI. DISCUSSION

A sufficient condition for nonlinear resonances to be g
erated and consequently for chaos to be exhibited by an
cillator is that the oscillation frequency varies with energ
Although the CPO has an energy-independent frequency~or
period! of motion in the absence of an external force,
frequency is shifted and becomes energy dependent whe
external force is applied. One can thus understand that
CPO can behave chaotically when it is driven by a su
ciently strong force. One may wonder whether the oscillat
frequency is shifted from its natural value also for the case
a nonrelativistic simple harmonic oscillator when an exter
force is present. That, however, is not the case. One ca
ev
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fact easily show that, by substituting Eq.~11! into Eq. ~22!,
V5w0, i.e., the frequency of the SHO in the presence of
external force is identical to that in the absence of an exte
force. The nonrelativistic SHO seems unique in this resp
All other systems including the CPO suffer a shift in th
oscillation frequency when an external force is applied. T
analogy between the CPO and the nonrelativistic SHO d
not go much beyond that they both have a constant
quency of motion in the absence of an external force. It
already been found that quantum energy eigenvalues of
CPO are not equally spaced@1#.

Throughout this paper we have implicitly assumed th
the external force may vary in time but is independent
spatial coordinates. Although an analysis similar to the o
described in Sec. IV can still be applied to the case when
external force varies both in time and space, some new
fects appear. It can be shown, for example, that even
frequency of the nonrelativistic SHO becomes energy dep
dent in the presence of a space-time varying external fo
@4#. Consequently, nonlinear resonances can be gener
and when they overlap, chaos can be exhibited by a non
ativistic SHO driven by a space-time varying force. This
of some practical importance in plasma physics, because
cyclotron motion of a charged particle interacting with
electromagnetic wave can be described by a simple harm
oscillator driven by an external force that varies periodica
both in time and in space@5–8#. We expect that the second
order canonical perturbation theory described in this pa
can also be used to describe the resonances and chaos o
ring in such motion. Details will be described elsewhere.
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